
Int. J. Solids Structures Vol. 24, No.9, pp. 973-985. 1988
Printed in Great Britain.

002()--7683/88 $3.00+ .00
© 1988 Pergamon Press pic

ON A THEORY FOR LARGE ELASTIC
DEFORMATION OF SHELLS OF REVOLUTION

INCLUDING TORSION AND THICK-SHELL
EFFECTS

LARRY A. TABER
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, U.SA.

(Received 20 November 1987; in revised form 27 April 1988)

Abstract-This paper presents a set ofequations governing the behavior ofelastic shells ofrevolution
undergoing large axisymmetric deformations. The approximate theory includes torsion, transverse
shear deformation, and transverse normal stress and strain but neglects body forces. Within the
limits of large membrane and moderately large bending and transverse shear strains, a two-dimen­
sional strain-energy density function is developed for a general incompressible, hyperelastic shell
materiaL

INTRODUCTION

During the last quarter of a century, advances in shell theory have brought valuable new
insights into a complex subject. Two-dimensional formulations have yielded particularly
elegant derivations of the governing equations, especially as regards the non-linear theory
(Reissner, 1974), Within the confines of axisymmetric deformation of shells of revolution
with torsion, this paper examines the "exact" two-dimensional non-linear equations in the
light of making simplifications consistent with a descent from three-dimensional elasticity
theory. Torsion can be important, for example, in fiber-wound pressure vessels with off­
axis orthotropy. Reissner (1966, 1969a, 1970) undertook similar work within the realm of
the linear theory.

A key advance in the formulation of a general non-linear shell theory was the approach
proposed by Simmonds and Danielson (1972) and later expounded upon by Reissner (1974)
and Libai and Simmonds (1983). In particular, Simmonds and Danielson split the general
deformation into a rigid-body rotation, which carries an orthogonal triad of unit vectors
at a point P into a second orthogonal triad at its deformed image P, and a distortion,
which is defined by the difference between the deformed base vectors and the triad at P.
Pietraszkiewicz (1980) and Schmidt (1985) discuss similar decompositions for geometrically
non-linear shell theories. Besides enabling a straightforward derivation of a set of intrinsic
shell equations, this approach can be used as a basis for a non-linear theory of elasticity
(Reissner, 1975). The current work uses this type of formulation as a convenient means to
establish the connection between the two- and three-dimensional equations.

Much recent research has turned to the development of an appropriate form for the
strain-energy density function to be used in shell problems involving large elastic strains.
In a descent from three dimensions, Simmonds (1985) obtained a first approximation for
general rubber-like shells, with later specialization and simplification of the analysis for
torsionless, axisymmetric deformation of shells of revolution (Simmonds, 1986). The basic
kinematic assumption of the theory allows transverse normal strains but neglects transverse
shear strains, which were added later (Taber, 1987). To complement the approximate field
equations, this paper modifies and further extends the earlier work on strain--energy functions
to include torsion in a quasi-linear theory, i.e. membrane strains can be large, but bending
and transverse shear strains can be only moderately large.

The descent from three dimensions brings at least one new question to light. A shell
theory based strictly on two-dimensional arguments does not explicitly account for the
stress components (l3i (i = 1,2,3), which are not necessarily equal to (In, where "3" is the
transverse direction. In the linear theory, Reissner (1970) showed that these components
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Fig. I. Deformed shell element: (a) three-dimensional schematic; (b) side view; (c) top view.

can be eliminated with the aid of the constitutive relations. But, if these equations are
nonlinear and material dependent, then the difficulty, if there is one, apparently is not
resolved so simply. This paper, therefore, also examines the question of whether there is
any significant inconsistency in neglecting these stresses in a two-dimensional shell theory.

FUNDAMENTAL EQUATIONS

Geometry
Deformation. Consider a shell with an axis of symmetry z (Fig. 1) defined relative to

a global cylindrical coordinate system with unit vectors (en eo, eo)' A point j5 on the unde­
formed reference (middle) surface S has the coordinates (f, 8, z) where bars indicate the
undeformed state. Associated with j5 is a local orthogonal triad of unit vectors ei , which
are parallel to the coordinate lines (e, s, ii) == (x" X2, x3)' with s being the meridional and ii
the transverse normal direction. t During deformation, j5 moves to P on the deformed
reference surface S, which is not necessarily the geometric midsurface. A second local

t In this paper, unless indicated otherwise, the usual summation convention on repeated subscripts
applies where Latin subscripts range over I, 2, 3 and Greek subscripts over 1,2. Also, it will be understood that
A. I == oAlf oe.
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orthogonal triad e j , obtained from ej through a rigid-body rotation, is associated with P.
As suggested by Simmonds and Danielson (1972), the ei will represent the basic reference
frame.

Lines normal to Sand S enclose the angles (fj and cjJ - r" respectively, with the axis of
symmetry. The meridional face of a shell element, which is not assumed to remain straight,
rotates through the additional average shear angle r s so that it forms an average angle cjJ
with the z-axis (Fig. 1(b)). Similarly, due to torsion, the circumferential face rotates through
an average angle n about the z-axis (Fig. 1(c)), with w = n-ro being the circumferential
angle between P and P. The rotated frame ei corresponds to the deformed positions of these
element faces. In terms of the defined coordinate bases, the position vectors to an arbitrary
point in the shell, before and after deformation (Fig. 1(a)), are

where

p = ~+iie3

p =~+", ,,= '1ie j

~ = r(er cos w+eo sin w)+zez

(1)

(2)

represent the positions of the reference surface.
The frame ei is obtained by rotating ej through n about ez into an intermediate system

ej, and thenrotating the ej through - (cjJ - (fj) about el. A simpler, equivalent procedure is,
with P taken at (J = 0 (without loss of generality), to rotate the global frame (en ee, ez)

through n about ez to get (en ee, ez) and then through n/2 - cjJ about ee to arrive at ej. This
latter sequence of rigid-body rotations is given by

(en ee, ez) = Q I . (en ee, ez)

(e3' eJ, e2) = Q2 . (en ee, ez)

where the rotator is (Libai and Simmonds, 1983)

Q~ = (2a; -1)1+ 2fJ~fJ~ + 2a~fJ~ x (a not summed)

in which

a~ = cos f3~/2, fJ~ = E~ sin f3~/2

(3)

(4a)

(4b)

are Euler parameters, with f3~ being the angle of rotation and E~ the unit vector along the
axis of rotation. For the current problem

give

f3 I = n, E I = ez

f32 = n/2-cjJ, E 2 = ee (5)

(6a)

(6b)

Bending strains. The strains due to bending enter by way of the curvature vectors of
the deformed reference surface

(7)

with the corresponding undeformed vectors given by placing bars over all quantities.
Substituting eqns (6) and (7) into the Gauss-Weingarten relations
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(8)

provides the geometry-dependent expressions

_ sin (p
k ll = -_-, k22 = (p/, k l2 = k21 = 0,

r

sin ¢
kIt = -_-, k n = ¢/, k 12 = 0, k 21 = 0/ sin ¢,

r

_ cos (p
CI = --_-,

r

cos ¢
CI = --_-,

r

(9a)

C2 = -0/ cos ¢

(9b)

where commas and primes denote differentiation with respect to Xi and 5, respectively.
Through the principle of virtual work, Reissner (1974) showed that the appropriate cur­
vature change measures aret

(10)

Extensional strains. In their approach, Simmonds and Danielson (1972) defined the
state of strain as the difference between the deformed (non-orthogonal) base vectors and
the orthogonal triad ei' In three dimensions, the strain (base) vectors are

(1la)

while in two dimensions

(llb)

in which p and ~ are defined in eqns (1) and (2). In eqns (11), Eij and e,p represent strain
tensors, and y, are transverse shear strains. Following Reissner (1970), one also calls the
Eij pseudostrains ; physical strains Eij are defined by

where {Ii = Ip,il, or

{I, = 1+iik", {l3 = 1 «()( not summed).

(12)

(13)

Specific forms for the strain components in terms of the geometry of Fig. 1 will be detailed
in a later section, The average shear angle C, which is contained implicitly in eqns (2), can
be found from the additional geometric relation r/ sin (¢ - r s) = z/ cos (¢ - C) or

Stress
The pseudostress vectors

r/ sin ¢-z/ cos ¢
tan r s = .'r/ cos ¢+z/ sm ¢

(14)

(15)

describe the three-dimensional state of stress in a shell, and the physical stresses per unit
undeformed area are

t The expressions for K.p used in Taber (1987) contain reference surface stretch ratios in the IE.P tenns. For
a thin shell, these terms, which were derived on physical grounds, contribute higher-order effects in the equilibrium
equations as derived through the principle of virtual work.
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tTl = 112
1
0'1> tT2 = 111

1
0'2, tT3 = (111112)-10'3'

977

(16)

With t being the initial shell thickness, stress and moment resultant vectors per unit
undeformed length of the reference surface

f
tl2

Na = O'a dn,
-t12

have components defined by

f
tl2

S = 0'3 dn,
-t12 f

tl2

M a = fJXO'a dn
-t12

(17)

(18)

where T/t represents the average transverse normal stress due to surface loads directly, in
addition to 8 3/t due to deformation.

Equilibrium
In three dimensions, force and moment equilibrium on a deformed shell element yield

the vector equations

(fO';),i = 0, P,i x (fO'J = 0 (19)

in which body forces and the possibility ofcouple stresses, which were included by Reissner
(1969a, 1970), have been ignored. The two-dimensional equilibrium equations are

(fNa),a+fp = 0

(fMa),a+~,a x (fNa)+fq = 0 (20)

where P = Piei and q = qiei are the respective thickness-averaged traction and moment
applied per unit undeformed reference surface area. The principle of virtual work gives
(Libai and Simmonds, 1983)

(21)

where pis the physical surface traction and + and - denote the surfaces n= t/2 and - t/2,
respectively.

Constitutive equations
In terms of the strain and stress components defined by eqns (11a) and (15), the

constitutive relations for a hyperelastic material are (Reissner, 1975)

GW
(jij = GE.

I)

(22)

in terms of the pseudostrain--energy function W(Eij). The strain energy per unit undeformed
volume is

(23)

To this point, the development has been exact. The principle of virtual work for a
strictly two-dimensional theory provides the exact two-dimensional counterpart of eqn
(22) (Libai and Simmonds, 1983). The next section, however, discusses these constitutive
relations within the context of an approximate descent from three dimensions.
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AN APPROXIMATE SHELL THEORY

A two-dimensional representation of a three-dimensional solid necessarily contains
approximations. Further approximations often must be made to render the resulting equa­
tions amenable to analysis. In the non-linear theory of shells, it is quite a challenge to
formulate equations that are relatively simple yet represent the true shell behavior
adequately. This section attempts to find such a set oftwo-dimensional relations which, for
the geometry under consideration, is consistent with three-dimensional elasticity theory.

The ensuing analysis is based on expansions in terms of the small parameter

e = hlL (24a)

where h = tl2 and L is the smallest deformation wavelength. Following Simmonds (1986),
one chooses non-dimensional quantities in the form

(r*,z*,s*) = L-1(r,z,s), 1J: = 1J.lhe, (n*,1JD = h- l(n,1J3)

(k:p, c:) = L(k.p, c.), (y:,gD = (y.,g.)le

a:p = a.pIC, (ai'), ati) = (ai], a3i)/Ce, p1 =pi/Ce, q1 = qi/Chez

N:p = N.pICh, (Q.*, Si*' T*) = (Q., Si, T)IChe

M:p = M.pICh z, r: = P.IChze, W* = WIC, w* = wlCh

( )' == 8( )/8&*, ()" == 8( )/8ii*, f== fI (24b)

in which C is a material constant with units of a Young's modulus. This scaling assumes
that transverse effects are small compared to membrane-type effects.

Geometry
From here until eqn (55), all equations are expressed in dimensionless form, but with

the asterisks removed. First of all, the curvature components retain their forms given by
eqns (9). Next, substitution of eqns (1), (2), and (7)-(9) into eqns (11) provides, for
axisymmetry, the pseudostrain components

E I == Ell = ell +e1J3k ll- eZ1JzCI, Ez == E 12 = e12 +e1J3k12 +ez1Jlcl

E3 == E I3 = eYI-eZ(1Jzk12+1Jlkll), E4 == E Z1 = eZI +e1J3k zl-eZ(1JzCz-1J/I)

E 5 == E 22 = e22+e1J3k22+eZ(1JICz +1J2), E6 == E Z3 = e(Yz+1J'3)-eZ(1Jzk22+1Jlkzl)

(25)

where reference-surface strains are

ell = r cos rolf-I, e22 = (r' cos ro+rw' sin r o) cos </J+z' sin </J-l

e12 = r cos </J sin rolf, eZI = rw' cos ro-r' sin r o

YI = r sin </J sin rolf, yz = (r' cos ro+rw' sin r o) sin </J-ZI cos </J. (26)

The strain field given by eqns (25) depends on the reference-surface strains and
curvatures and on 'I, which describes motion relative to this surface. Matters are simplified
considerably if the position of S is defined by the average

(27a)
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which Libai and Simmonds (1983) introduced to obtain the dynamic equations of motion
for a shell by integrating the three-dimensional relations. Substitution of eqns (lh into eqn
(27a) yields the condition

f'1 dfl = O. (27b)

Consider first the components '11 and '12' As eqns (25) show, E 31 and E 32 depend only
on these variables. If the shear strains are small, then, for a polar orthotropic material, the
corresponding shear stresses would be proportional to them. At this point, the theory is
restricted to moderately large transverse shear strains, i.e. (EI3' Ejb E~3' Ej2) « 1, and it
is assumed that this proportionality holds. Then, the boundary conditions

(28)

for i = 1,2 are satisfied by E 31 = E 32 = 0 at fl = ± 1 ifPI = P2 = O.
A need to ignore the influence of the tangential components of the surface tractions

on the corresponding shear strains arises due to the large-strain coupling between stretching
and shear deformation (see eqn (55)). This feature precludes a simple relation between a
non-zero shear stress and shear strain at the shell surfaces. On the other hand, a variational
formulation can include PI and P2 (Naghdi, 1957). Since three-dimensional numerical
solutions, which can show the importance of these tractions, are beyond the scope of this
paper, one neglects the effects ofPI andp2' Then, the simplified boundary conditionsimply
the first approximation

and eqns (25) give

E 3a = 2egJ(fl)

where

f(fl) = 3(1- fl2)/4.

The ga represent average shear strains, i.e.

(29)

(30)

(31)

(32)

Now, as mentioned earlier, the ga do not enter a strictly two-dimensional formulation.
As in Timoshenko beam theory, the shear strains Ya are often assumed constant across the
thickness. On the other hand, in the linear theory, the transverse shear stresses are parabolic
over the thickness with a shear correction factor entering the constitutive relations. Here,
since the E 3a fields are taken parabolic (eqn (30)), the replacements

Ya - 2yJ(fl) (33)

in eqns (25) render the O(e) terms of the Ea3 essentially in the same form, consistent with
the approximate shear stress distribution (Reissner, 1970). Substitution of expression (33)
into eqns (25) and noting eqn (27b) show that
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(34)

represent average transverse shear strains. Expression (33) will be used only for the three­
dimensional strain field of eqns (25).

For an incompressible material, the incompressibility condition

(35a)

provides the components ''13, or, with eqns (1la) and (12), this equation becomes

where Vijk is the three-dimensional permutation symbo1. If the expansion

'13 == n = no +enl + ...

(35b)

(36)

and eqns (12) and (25) are inserted into eqn (35b), collection of like powers of e and again
noting eqn (27b) yield

no = A3fi (37)

where

A3 = (AIA2 -el2e21)-1 (38a)

with

Ai = 1+eu (i not summed) (38b)

being stretch ratios. Remarkably, due to condition (27b), this approximate theory requires
only no. If the material is compressible, a condition such as plane stress determines '13
(Simmonds, 1987).

Stress
Substitution ofeqns (1h (15), and (18) into eqns (17) provides the stress and moment

resultant components

(NaP' Qa, Sa) = f (O"aP' O"a3' 0"3a) dfi, S3 +T = f 0"33 dfi

Map == f('130"ap- e2'1pO"a3) dfi, Pa = fVYP'1yO"apdfi (39)

where vap is the two-dimensional permutation symbol, i.e. VI2 = -V21 = 1, VII = V22 = O.
Corresponding to the shear strains of eqns (30) and (33) are the assumed shear stress
distributions

(40a)

and one takes the transverse normal stress in the form

(40b)

where f is given by eqn (31). If
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T=pj+P"3
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(40c)

then eqns (40a) and (40b), which agree with the assumed stress distributions of Naghdi
(1957) for the linear theory, satisfy eqns (39) for Q. and 8 i and boundary conditions (28)
for PI = pz = o.

Equilibrium
Combining eqns (8), (11), (15), (24), (36), and (38) with eqns (19) provides the scalar

form of the three-dimensional equilibrium equations

II = (f(JZI)'/f+(J~I-(J22CZ'-(J12CI +e«(J13k ll + (JZ3 k 21) = 0

Iz = (f(J22)'/f+(J~z +O"IICI +(JZICZ +e(O"Z3k22 +0"13kIZ) = 0

13 = e(fO"Z3)'jf+0"~3-(Jllkll-(J22k22-(J12k12-0"21kzl = 0 (41a)

and, to O(e) with e divided out

ml = A3(J3Z-AZ(JZ3-e120"13+e13(JIZ+(YZ+nO)(J22 = 0

mz = A30"31 - A10" 13 - eZI(JZ3+ e '3(J II +(yz +no)(Jzl = 0

m3 = AZO"21 -AIO"IZ+eIZO"II-eZIO"22 = O. (4Ib)

In two dimensions, the shell equilibrium equations, given by substituting eqns (8), (lIb),
(18), and (24) into eqns (20), are

(fNzI)'/f-czN22-CIN12+e(kIIQI +k21 Qz)+PI = 0

(fN22 )'/f+c,NI1 +cZNZ1 +e(kzzQz+klzQI)+Pz = 0

e(fQz)'jf-klINll-k22N22-kIZNIZ-k21N21 +P3 = 0 (42a)

e[(fM21 )'jf-c IM 12 -cZM 22 -AIQI -ezlQz +yINII +YzNzd +eZ(k12PI+kzzPz +ql) = 0

e[(fM22 )'jf+cIM l1 +czMzI -AzQz -e12QI +yIN1Z +yzNzz]-eZ(kIIP I+k21 P z-qz) = 0

eZ(fPz)'/f+e(kIIM12 +kZI M 22 -k12M l1 -k22 M zI ) +A IN 12 -AzNzI

-e12NII +ezlNzz +eZq3 = 0 (42b)

which agree with those of Reissner (1974).
Equations (42a) also can be obtained, with the aid of eqns (21), (28), and (39), by

integrating eqns (41a) over the undeformed shell thickness. On the other hand, integrating
eqns (41b)1 and (4Ib)z gives

8 1 = A"3 I(AIQI +ezIQz-YINll-YzN21)

8 z = A"3 1(AzQz +elzQI -yINIZ -YzNzz )

while eqn (41 b)3 reproduces the first-order terms of eqn (42bh Next, consider

fj;n dfi = 0

(43a)

with the j; given by eqns (41a). Taking i = 1 and 2 and noting eqns (42b) simply give eqns
(43a) again. But i = 3 provides, to the first order

(43b)

in which eqns (36), (37), (39), and (40) have been used. If the deformed curvatures k.{J are
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replaced by the undeformed curvatures f~fJ and A3 --+ I, then, for PI = P2 = 0, eqn (43b)
reduces to the approximation for transverse normal stress derived by Naghdi (1957).

Constitutive relations
The two-dimensional counterparts of eqns (22) now will be derived. In a descent from

three dimensions, the strain-energy density per unit undeformed reference surface area is

w = fW dii. (44)

Differentiation of this relation with respect to each e~fJ' y~, g~, k~fJ' c~, using the chain rule,
substituting eqns (10), (22), (24), (25), (30), (31), (33), and (40a), and integrating yields
the first-order approximationst

OW
N~fJ=~'

ue~fJ

_lOW
M~fJ=8 -",-,

uK~fJ

-2 ow
p~ = 8 ot/J~ (45)

where b = 5/6. Since E 33 has been determined from incompressibility, S3 is a reactive
quantity to be found from eqn (43b). Furthermore, note that, for the specific geometry
considered in this paper, K12 = 0 (eqns (9) and (10», and so M I2 is also a reactive quantity
with its corresponding constitutive relation deleted from eqns (45). The same is true of
(y~, g~) and (Q~, S~) if transverse shear deformation is neglected.

STRAIN-ENERGY DENSITY FUNCTION

The development of an approximate form of the two-dimensional strain-energy func­
tion W for an incompressible material follows the analyses of Simmonds (1986) and Taber
(1987). After substitution of eqns (29), (33), and (36), eqns (25) 1-(25) 8 can be written in
the form

(46)

where n = 1,2, ... ,8 and, subsequently, summation over double subscripts is implied over
this range. Again, the relation for E 33 is not included due to the a priori enforcemen~ of
incompressibility. A Taylor series expansion provides

(47)

for the three-dimensional strain-energy density, where

(48)

Simmonds (1985, 1986) has shown that, for moderately large bending and transverse shear
strains, i.e. (tK~)2, y;, g; « 1, the form of w for a thin shell is the same as that for a flat
plate. Thus, the initial curvatures can be ignored, and the chain rule and eqn (46) yield

(49)

in which

tFor an incompressible material, one can take W= W(Ei)+p[(G/G)I/2-1], where p is a hydrostatic
pressure and the term in brackets is given by eqns (35). Normally, p would be determined from the equilibrium
equations and boundary conditions. But here, one assumes that p "" 8 33, the true transverse normal stress, in
agreement with the exact solution for bending of a cuboid (Green and Zerna, 1968). Based on this assumption,
p contributes terms of higher order in the constitutive equations and, therefore, is dropped with incompressibility
enforced a priori in W.
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oW
W,n == oE .

n
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(50)

Now, insertion of eqns (46) and (47) into eqn (44) and subsequent integration gives
(with eqns (36) and (37»

(51a)

where

(51b)

and the kop have been replaced by Kop so that w vanishes for a shell in the undeformed state.
Due to condition (27b), many terms have dropped out of the above equations. In fact, with
the observation that shear strains must enter through terms of at least second order, eqns
(25) and (49) show that

Furthermore, if it is assumed that stresses depend on only the local values of the strains
and not strain gradients, then F(A3) can be dropped.

Equations (51) are valid for any W that allows axisymmetric deformation. One can
now specialize eqn (51a) to a neo-Hookean shell with

in which Lagrange stretch ratios are defined by

All. = Gi • GdJ1l (i not summed)

(52)

(53)

with G i given by eqn (lla). For a flat plate, J1i = 1 and Eij = Eij , and substitution of eqn
(I1a) into eqn (53) gives

in which

AiL = Ai+Eiz +Ei3

A~L = A~+E~1 +E~3

AjL = Aj+Ejl +Ejz

Ai = 1+Eu (i not summed).

(54a)

(54b)

Now, substitution of eqns (54a) along with A3, given by solving eqn (35b), into eqn (52)
provides Was a function of El> Ez, ... , E s. Then eqn (5Ia) becomes, upon restoration of
dimensional variables
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w/et = AT + A~ +A~ +eTz +e~1 - 3+ (A~tZ /12)[(1 + 3A~Aj)KT1+ 2(3AlAzA3 -l)A~KIIK22

+ (1 + 3ATAj)K~z + (1 + 3e~IAj)KTz + 2(1 + 3eIZeZlA3)A~K\2KZI + (1 + 3eTzAj)K~1

- 6Aj(AZe21 KIlK\2 +AzeIZKIlKzI +AleZ1KZZK\2 + AleIZKzzKzl)]

(55)

where A3 is given by eqn (38a). For Ya = ga = e\2 = eZI = K\2 = KZI = 0, eqn (55) agrees
with the result of Simmonds (1986).

At this point, we make a few observations. First, note that, if Qa and Sa are computed
through eqns (45) and (55), the shear correction factor b drops out. This is a consequence
of taking parabolic distributions for the shear stresses and shear strains. Secondly, in a
strictly two-dimensional formulation (Simmonds and Danielson, 1972; Reissner, 1974), the
terms involving ga in eqn (55) do not appear. For axisymmetric deformation, the shell
theory of Reissner (1969a, b, 1972) and the work of Taber (1987) contain a transverse shear
strain r defined as the rotation due to shear of lines originally normal to the reference
surface. For small strains, a two-dimensional theory can be based on r = Yz+gz and an
equivalent transverse shear stress resultant Qz = Qz+ Sz. In this case, as shown by eqn (55)
with Ai -+ 1, w would contain a r zterm. For large strain, however, the appearance of stretch
ratios in the Yzgz cross term apparently indicates that such a theory is not possible. When
torsion is allowed, the YIgl and the complex KIZ and K21terms suggest similar conclusions.
Moreover, one can note that the term yVA~ in w as derived by Taber (1987) seems to
represent something of a middle ground approximation for large strain. But experimental
and numerical studies are needed to resolve the accuracy of the approximations proposed
here.

SUMMARY

With K\2 = 0, eqns (9), (10), (26), (42), (43), and (45) provide essentially 33 equations
to be solved for 33 unknowns: r, Z, cjJ, n, OJ, eap, Ya, ga, Kap (except K\2), l/Ja, Nap, Qa, Map,
Pa, and S;. The boundary conditions, which can be found through the principle of virtual
work, are not considered here. /

Equations (25) and (42) delineate the relative orders of various contributions to the
shell behavior. The 0(1) terms provide the equations of non-linear membrane theory, the
O(e) terms add bending and transverse shear effects, and the O(e Z

) terms contain the higher­
order effects due to moments turning about the "normal" (actually the e3 direction) to the
reference surface. Since the l/Ja do not enter w to O(eZ) (eqns (51)), the latter terms probably
can be neglected in most problems. Equations (42b) also suggest ignoring these terms, along
with the qi' especially since the effects ofPI and pz are neglected. Finally, a theory neglecting
transverse shear deformation can be recovered from these equations by stipulating
Ya = g. = 0 in the strain--energy density function.
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APPENDIX: ALTERNATE FORM OF THE EQUILIBRIUM EQUATIONS

Reissner (1950) showed that the equations of force equilibrium for axisymmetric deformation of shells of
revolution simplify considerably when written in terms of horizontal and vertical force components. Replacing
eqn (18)" one can write

N, "" H,e,+ V,ez+N,oee

N e "" Hee,+ Veez+Neeee

P "" PHe, +p"ez +Peee (AI)

where the e, are given by eqns (6a). Substitution into eqn (20) h taking appropriate derivatives of the unit vectors,
and using eqns (9b) yield the scalar relations

(i'V,Y +i'pv '" 0

(i'H,Y-Nee-i'Q'N,o+i'PH "" 0

(i'N,eY +He +i'Q' H, + i'Pe = 0

in place of eqns (42a). Given Pv, the first relation can be integrated to obtain V, directly.

(A2)


